Katedra Energetyki

Laboratorium Mikrosilników Elektrycznych

Temat ćwiczenia:

Badanie silnika krokowego MD-530T z hamownią

dr inż. Konrad Zajkowski

Zestaw MD-530T jest stanowiskiem dydaktycznym przeznaczonym do badania właściwości silników krokowych. Stanowisko tworzy silnik krokowy połączony z układem hamulca proszkowego oraz oprogramowanie umożliwiające archiwizację danych. Stanowisko zostało przedstawione na rys. 1.

Rys.1. Stanowisko laboratoryjne MD-530T

A. Zestawienie elementów

Część kontrolno-pomiarowa – kolejno:

- Q1 MX-320PY Wyłącznik główny
- F1 Wyłącznik różnicowy z członem nadprądowym (charakterystyka B, 10 A)
- T1 MDR-60-24 Zasilacz impulsowy 24V, 2.5A, 60W, zasilanie obwodu sterowania
- T4 DRV8801 36V/1A Kontroler PWM prądu hamulca
- K1 FT1A-H40RSA Sterownik PLC, 24DI(6AI),16DO(1x4+2x4Rly +4Tr Source), 2xRS485/RS2
- K2 WDT11-U Przetwornik tensometru
- K3 HCP-03 Przetwornik PT100 na sygnał analogowy 0÷10V
- S1 START/STOP, LED-praca
- S2 Kasowanie awarii, LED-awaria
- S3 Wyłącznik awaryjny
- S4 Regulacja prędkości
- S5 Regulacja hamulca
- T5 DM556 Kontroler silnika krokowego 5.6 A, 20÷50 V
- T2 TSZSW 63/002M Transformator bezpieczeństwa 65VA, 24V, 2.7A; zasilanie silnika
- T3 Zasilacz niestabilizowany (prostownik + filtr), zasilanie silnika
- K4 LP4K0610BW3 Stycznik, zasilanie silnika

Zespół hamowni z silnikiem krokowym:

- M1 57HS56-3004A635-D21 Silnik krokowy 1,1Nm bipolarny 2.5A/2.2V, 200 kroków/obrót
- M2,M3 Wentylator 24V
- B1 NA27-005 Mostek tensometryczny 5kg 1mV/V
- B2 Czujnik PT100
- B3 Czujnik optyczny odbiciowy PNP NO, 10÷30 V DC
- F2 Termostat; NC; Topen:65°C; Tclos:40°C; 2.5A; 250V AC
- R3 P3HR Hamulec proszkowy 3 Nm; 100 W; 24VDC; 0.8 A

B. Obsługa stanowiska

Po włączeniu zasilania włącznikiem głównym Q1 i uruchomieniu oprogramowania na komputerze należy nawiązać komunikację ze stanowiskiem.

Przycisk pokrętny S1 załącza pracę stanowiska:

- załączenie pracy kontrolera silnika krokowego T5,
- załączenie hamulca R3,
- załączenie wentylatorów M2 i M3 (załączone automatycznie po nagrzaniu się hamulca).

Przycisk monostabilny NO żółty podświetlany pełni funkcję sygnalizacji i kasowania alarmu. Zadajniki potencjometryczne S3 i S4 umożliwiają sterowanie układem napędowym:

- S3 sterowanie częstotliwością impulsów silnika krokowego,
- S4 sterowanie pracą hamulca.

C. Konfiguracja kontrolera silnika krokowego DM556

Gdy nie jest w trybie konfigurowanym programowo (on, on, on, on), rozdzielczość mikrokroków jest ustawiana za pomocą SW5, 6, 7, 8 przełącznika DIP, jak pokazano w poniższej tabeli:

Mikrokroki	kroków/360°	SW5	SW6	SW7	SW8
2	400	off	on	on	on
4	800	on	off	on	on
8	1600	off	off	on	on
16	3200	on	on	off	on
32	6400	off	on	off	on
64	12800	on	off	off	on
128	25600	off	off	off	on
5	1000	on	on	on	off
10	2000	off	on	on	off
20	4000	on	off	on	off
25	5000	off	off	on	off
40	8000	on	on	off	off
50	10000	off	on	off	off
100	20000	on	off	off	off
125	25000	off	off	off	off

Gdy nie jest w trybie konfiguracji programowej (off, off), pierwsze trzy bity (SW1, 2, 3) przełącznika DIP są używane do ustawienia prądu dynamicznego. Wybierz ustawienie najbliższe wymaganemu prądowi silnika.

Prąd szczytowy	Prąd RMS	SW1	SW2	SW3
2.1A	1.5A	on	off	off
2.7A	1.9A	off	on	off
3.2A	2.3A	on	on	off
3.8A	2.7A	off	off	on
4.3A	3.1A	on	off	on
4.9A	3.5A	off	on	on
5.6A	4.0A	on	on	on

D. Pomiary na stanowisku

Stanowisko jest wyposażone w oprogramowanie, które umożliwia archiwizację następujących danych pomiarowych ze stanowiska:

- częstotliwość impulsów sterujących silnikiem krokowym [imp/s],
- prędkość obrotowa f [obr/s],
- moment obrotowy *M* [*Nm*],
- moc mechaniczna P[W].

Rys.2. Połączenie kontrolera silnika ze sterownikiem

E. Oprogramowanie MD-Lab: MD-530T

Uruchomić aplikację MD-530T. Program domyślnie uruchamia się w trybie oczekiwania i próbuje nawiązać komunikację ze stanowiskiem na portach od COM0 do COM10.

Jeśli program nie nawiąże komunikacji automatycznie, to należy wybrać odpowiedni port COM, a następnie nawiązać połączenie używając przycisku Połącz.

Rys.3. Pulpit programu do obsługi MD-530T

Po nawiązaniu komunikacji należy uruchomić zapis do pliku przyciskiem Start/Stop, który po rozpoczęciu zapisu będzie podświetlony na zielono.

1. Pomiar charakterystyk zespołu napędowego przy zadanym sterowaniu silnika

Celem ćwiczenia jest zbadanie zachowania zespołu: silnik krokowy z hamulcem przy zmiennym obciążeniu, a stałym sterowaniu silnikiem krokowym. Podczas ćwiczenia silnik krokowy będzie sterowany stałą, zadaną częstotliwością. Podczas pracy zmieniane będzie obciążenie silnika. Na podstawie zarejestrowanych danych wyznaczone zostaną charakterystyki prędkości obrotowej w funkcji obciążenia.

- 1. Przed włączeniem zasilania stanowiska sprawdzić konfigurację kontrolera silnika krokowego. Zanotować nastawę do protokołu pomiarowego.
- 2. Włączyć program do obsługi stanowiska i nawiązać połączenie ze stanowiskiem.
- 3. Włączyć pracę stanowiska przyciskiem S1.
- 4. Sprawdzić działanie stanowiska, zmieniając nastawę częstotliwości kroków S4 oraz hamulca S5.
- 5. Następnie należy ustalić punkt pracy silnika wybrać częstotliwość kroków.
- 6. Pokrętłem S5 ustawić obciążenie na zero.
- 7. Zapisać parametry pracy w danym punkcie.
- 8. Wprowadzić obciążenie i stopniowo zwiększając jego wartość zapisywać w karcie pomiarowej parametry pracy.
- 9. Wyłączyć obciążenie i wyłączyć pracę stanowiska.

Ln	fz=const	f	М	Р	In	fz=const	f	М	Р
Lp.	[imp/s]	[obr/s]	[Nm]	[W]	Ľр.	[imp/s]	[obr/s]	[Nm]	[W]
1					1				
÷					÷				
10					10				

10. Na podstawie wyników pomiarowych wykreślić charakterystyki obrotów i częstotliwości kroków w funkcji momentu obrotowego.

2. Wyznaczanie maksymalnej częstotliwości roboczej

Celem ćwiczenia jest zbadanie zespołu: silnik krokowy z hamulcem przy zmiennej prędkości obrotowej. Na podstawie zarejestrowanych danych wyznaczony jest maksymalny moment obrotowy silnika krokowego.

- 1. Przed włączeniem zasilania stanowiska sprawdzić konfigurację kontrolera silnika krokowego.
- 2. Włączyć program do obsługi stanowiska i nawiązać połączenie ze stanowiskiem.
- 3. Włączyć pracę stanowiska przyciskiem S1.
- 4. Sprawdzić działanie stanowiska, zmieniając nastawę częstotliwości kroków S4 oraz hamulca S5.
- 5. Pokrętłem S5 ustawić obciążenie na zero.
- 6. Następnie należy ustawić prędkość minimalną i zapisać częstotliwość kroków.
- 7. Należy zwiększać obciążenie i obserwować moment obrotowy.
- 8. W pewnym momencie silnik zatrzyma się. Ostatnią wartość momentu obrotowego tuż przed zatrzymaniem należy zanotować do tabeli. Należy wtedy wyłączyć obciążenie, a jeśli silnik dalej stoi w miejscu, należy pokrętłem S4 zmniejszyć częstotliwość kroków.
- 9. W sytuacji gdy kontrolka S2 zgłasza błąd, należy wykonać reset: kolejno: S1 wyłączyć, S2 wcisnąć, S1 załączyć
- 10. Należy ustawić większą prędkość i zapisać częstotliwość kroków.
- 11. Punkty 7, 8, 9 i 10 wykonywać aż do częstotliwości maksymalnej (1000 imp/s).
- 12. Wyłączyć obciążenie i wyłączyć pracę stanowiska.

Ln	fz	f	М		
Lp.	[imp/s]	[obr/s]	[Nm]		
1					
÷					
15	1000				

- 13. Wykreślić charakterystyki momentu obrotowego w funkcji częstotliwości kroków. Punkty pomiarowe aproksymować.
- 14. Sformułować wnioski.

3. Wyznaczanie częstotliwości rozruchowej

Celem ćwiczenia jest wyznaczenie częstotliwości rozruchowej, przy której silnik wraz z obciążeniem może ruszyć lub się zatrzymać nie gubiąc kroku. Jest to wartość maksymalna częstotliwości, powyżej której silnik nie jest w stanie ruszyć.

- 1. Przed włączeniem zasilania stanowiska sprawdzić konfigurację kontrolera silnika krokowego.
- 2. Włączyć program do obsługi stanowiska i nawiązać połączenie ze stanowiskiem.
- 3. Włączyć pracę stanowiska przyciskiem S1.
- 4. Sprawdzić działanie stanowiska, zmieniając nastawę częstotliwości kroków S4 oraz hamulca S5.
- 5. Pokrętłem S5 ustawić obciążenie na minimalną wartość taką, przy której regulując częstotliwość pokrętłem S4, zauważalne będzie zjawisko gubienia kroków.
- 6. Ustawić taką nastawę częstotliwości (S4), przy której silnik gubi kroki.
- 7. Następnie należy przejść do regulacji częstotliwości (S4). Należy stopniowo zmniejszać częstotliwość, aż do momentu startu silnika.
- 8. W tabeli zanotować parametry odpowiadające granicznej częstotliwości rozruchowej.
- 9. W sytuacji gdy kontrolka S2 zgłasza błąd, należy wykonać reset: kolejno: S1 wyłączyć, S2 wcisnąć, S1 załączyć
- 10. Minimalnie zwiększyć obciążenie (S5) i powtórzyć operacje z punktów 6÷10.
- 11. Wyłączyć obciążenie i wyłączyć pracę stanowiska.

In	fz	f	М	
цр.	[imp/s]	[obr/s]	[Nm]	
1				
÷				
10				

- 12. Wykreślić charakterystyki momentu obrotowego w funkcji częstotliwości kroków. Punkty pomiarowe aproksymować.
- 13. Sformułować wnioski.

